READ

Neurorehabilitation: fighting strokes with robotics

Having a stroke can be a scary experience, but the long road to recovery might be getting shorter, thanks to research out of ECU.
diversus devops
diversus devops

Imagine suddenly losing control of a limb or your ability to communicate.

And while this happens, excruciating pain spreads across your head.

This was Joanna’s experience when she had a stroke at the age of 44.

“I was sick 3 days up to having my stroke,” Joanna explains. “I had vomiting, headaches and was not making much sense when talking.”

“Three days later, I was sitting down and then it felt like my head was being squeezed between two vices. Excruciating pain.”

View Larger

After surviving a stroke, the rate of recovery can vary drastically from person to person.

Image credit: Particle
After surviving a stroke, the rate of recovery can vary drastically from person to person.

Risk factor

In Australia, strokes affect around 55,000 people a year and are the third most common cause of death and a leading cause of disability.

There’s a range of factors that increase the risk of strokes, including diet, exercise and high blood pressure.

But one of the most telling risk factors is, simply, age.

From the age of 45, the risk of a stroke in men is one in four, and for women, it’s one in five.

Fortunately, our knowledge of strokes and how to combat them has improved a lot in the past few decades.

A big part of the solution is getting help quickly, according to Edith Cowan University (ECU) Professor Dylan Edwards.

“If it’s the blockage of a blood vessel, it can be treated very well by anti-coagulant therapy that will break up the blood clot and restore the blood flow to the brain,” Dylan says.

“Typically, you notice somebody is having a stroke by them having issues with their speech or they have a weakness or funny sensation in one side of their body.”

“It’s imperative that you get them to the hospital quickly so that they can be treated.”

But surviving a stroke is only part of the journey, and with 65% of stroke survivors suffering from some form of disability, restoring motor skills is a critical part of rehabilitation.

View Larger

Professor Dylan Edwards heads up Edith Cowan’s Lab for NeuroRehabilitation and Robotics

Image credit: Particle
Professor Dylan Edwards heads up Edith Cowan’s Lab for NeuroRehabilitation and Robotics

Road to recovery

Recovery from stroke can be a long and frustrating road for even the smallest paralysation.

For stroke survivor Joanna, the frustration she felt not being able to move normally made the recovery process even more challenging.

“The emotional side of having the stroke has affected me more than anything else,” Joanna says.

“You slowly get used to the fact that you can’t move your left side, and you know that you’ll get therapy. But when I had people come visit, when they left, I was in tears [out of frustration].”

Joanna eventually started to get some feeling back in her left side, just to her thumb at first.

“It was still a shock that I had lost all of that, so just a little bit of movement was enough to keep me going and stay motivated.”

Joanna using the Kinarm at ECU’s Lab for Robotics

Image credit: Particle
Joanna using the Kinarm at ECU’s Lab for Robotics

Fighting back with technology

At ECU’s Lab for NeuroRehabilitation and Robotics, Dylan and his team have been researching how to help people recover their motor control after a brain or spinal cord injury.

Part of their research focuses on understanding the recovery of stroke survivors, using a robotic sensory platform called the Kinarm Exoskeleton Lab.

“The Kinarm looks like a fancy piece of gym equipment,” Dylan explains. “You sit inside the device and position your arms on top of movable handles, and you’re wheeled into this virtual reality environment.”

For the user in the chair, it feels like you’re playing a series of games, moving the chair’s arms to get a response on the screen – such as bouncing balls off paddles.

But the real work is happening behind the scenes.

“All of this information is acquired by these high-powered computers and analysed for how the person is performing,” Dylan says. “This [helps] identify the precise proprioceptive issue with an individual stroke survivor so we can prescribe therapy more effectively.”

UCSF Physical Therapist Heather Bhide explores balance and movement with a discussion on human proprioception.

Video credit: University of California Television (UCTV)
UCSF Physical Therapist Heather Bhide explores balance and movement with a discussion on human proprioception.

In simplest terms, the Kinarm helps identify issues where the user is telling their arm to move but the resulting movement is not what they were trying to do.

This could be an arm not extending the full distance or slower reaction times.

With strokes usually affecting one side of the body more than the other, the unaffected side can provide a good baseline for what their normal reactions should be.

But what if both sides of the body have been affected? The Kinarm can pick up on that too, detecting deficits in what would be considered the unaffected side and showing this in the test results.

R&R – Robotics and Recovery

For Joanna, using the Kinarm has been a challenging experience, even 3 years after her stroke.

“It actually made you concentrate more in the game to hit the balls coming down,” she explains.

“I think that made you use the brain to try and keep up with your eye, which it didn’t, but I gave it my best shot. I also noticed my peripheral vision has gone.”

“It highlighted for me the improvements I have got since my stroke, which is nice for me 3 years on to see how it was then to what I could actually achieve on the Kinarm now.”

The data collected helps doctors prescribe the most beneficial treatment for their patients, based on the results of the tests.

Whether it’s heading towards recovering the function in a limb or something as simple as the mobility of a single joint, Dylan believes even small changes are worth pursuing.

“Small changes in daily activity can be very meaningful. Things like cleaning under your armpit, reaching behind to a bra strap or a seatbelt, being independent at home,” Dylan explains.

“Some degree of independence – even though it might not be apparent to an onlooker or a carer – can be very meaningful for a patient.”

“Small changes that we have made in the past through prescribing therapies effectively are things like being able to stabilise yourself on the train and send a text message.”

View Larger

Joanna survived a stroke at the age of 44 and has been utilising the Kinarm as part of her recovery.

Image credit: Particle
Joanna survived a stroke at the age of 44 and has been utilising the Kinarm as part of her recovery.

Recovering movement and lives

While full recovery from a stroke is not guaranteed, any improvement to quality of life can mean everything for survivors. Restoring simple movements can help patients build up their self-confidence to return to their everyday lives.

“Often stroke patients are in the older age bracket, and many of them are working,” Dylan says. “It’s very depressing to be disengaged from a functional work life, and going back to work might just be having the confidence of turning over a page of paper at your desk.”

“This can make a world of difference for patients.”

As we learn more about how the body and brain recover after these traumatic events, there’s hope we can find ways to better support those who have experienced extensive motor damage.

While there’s medication and training regimes to follow, at its core, it comes down to the drive to actively engage in recovering.

And even if it’s just through small victories, a spark from ECU’s Lab for NeuroRehabilitation and Robotics could help light the fire of determination in stroke survivors.

diversus devops
About the author
diversus devops
View articles

NEXT ARTICLE

We've got chemistry, let's take it to the next level!

Get the latest WA science news delivered to your inbox, every fortnight.

Republish

Creative Commons Logo

Republishing our content

We want our stories to be shared and seen by as many people as possible.

Therefore, unless it says otherwise, copyright on the stories on Particle belongs to Scitech and they are published under a Creative Commons Attribution-NoDerivatives 4.0 International License.

This allows you to republish our articles online or in print for free. You just need to credit us and link to us, and you can’t edit our material or sell it separately.

Using the ‘republish’ button on our website is the easiest way to meet our guidelines.

Guidelines

You cannot edit the article.

When republishing, you have to credit our authors, ideally in the byline. You have to credit Particle with a link back to the original publication on Particle.

If you’re republishing online, you must use our pageview counter, link to us and include links from our story. Our page view counter is a small pixel-ping (invisible to the eye) that allows us to know when our content is republished. It’s a condition of our guidelines that you include our counter. If you use the ‘republish’ then you’ll capture our page counter.

If you’re republishing in print, please email us to let us so we know about it (we get very proud to see our work republished) and you must include the Particle logo next to the credits. Download logo here.

If you wish to republish all our stories, please contact us directly to discuss this opportunity.

Images

Most of the images used on Particle are copyright of the photographer who made them.

It is your responsibility to confirm that you’re licensed to republish images in our articles.

Video

All Particle videos can be accessed through YouTube under the Standard YouTube Licence.

The Standard YouTube licence

  1. This licence is ‘All Rights Reserved’, granting provisions for YouTube to display the content, and YouTube’s visitors to stream the content. This means that the content may be streamed from YouTube but specifically forbids downloading, adaptation, and redistribution, except where otherwise licensed. When uploading your content to YouTube it will automatically use the Standard YouTube licence. You can check this by clicking on Advanced Settings and looking at the dropdown box ‘License and rights ownership’.
  2. When a user is uploading a video he has license options that he can choose from. The first option is “standard YouTube License” which means that you grant the broadcasting rights to YouTube. This essentially means that your video can only be accessed from YouTube for watching purpose and cannot be reproduced or distributed in any other form without your consent.

Contact

For more information about using our content, email us: particle@scitech.org.au

Copy this HTML into your CMS
Press Ctrl+C to copy